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The e!ect of high-frequency, non-resonant parametric excitation on the low-frequency
response of spinning discs is considered. The parametric excitation is obtained through
a non-constant rotation speed, where the frequency of the pulsating overlay is much higher
than the lowest natural frequencies. It is shown analytically and numerically that this
excitation has the non-trivial e!ect of increasing these natural frequencies with increasing
pulsation amplitude.

( 2000 Academic Press
1. INTRODUCTION

Non-trivial e!ects of high-frequency parametric excitation on the low-frequency dynamics
of spinning annular discs are considered. The disc is either clamped at the inner radius and
free at the rim (a clamped-free disc) or vice versa (a free-clamped disc). It is shown that natural
frequencies of the lower modes of a disc can be increased through high-frequency
parametric excitation.

Current designs of circular saws and computer disk drives tend towards the use of thinner
and higher speed discs. Decreased disc thickness reduces the bending sti!ness and thereby
the critical rotation speed of spinning discs. High speeds mean operating close to this
critical rotation speed. Spinning discs subjected to a stationary transverse force, for example
from the cutting process or the record-write head, lose the stability of the plane equilibrium
at its critical rotation speed (e.g., references [1, 2]). This so-called critical speed resonance has
recently been studied in detail by Raman [3]. Furthermore, higher speeds increase the
aerodynamic pressure on spinning discs which also may cause instabilities (e.g., references
[4}6]). Alternative methods to increase the critical rotation speed of spinning discs, without
compromising the thickness requirements, are therefore interesting.

High-frequency excitation, or fast excitation, can have non-trivial e!ects on the linear and
non-linear properties of mechanical systems. In particular, the linear sti!ness about an
equilibrium position may be increased through fast parametric excitation. The classical
example is the stabilization of the inverted position of the planar pendulum (the Kapitza
Pendulum [7]). Many other studies considering stability of systems subjected to fast
excitation have been conducted; see, for example Blekhman [8] and the recent works by
Jensen [9}11]. Experimental reproduction of these e!ects for an axially loaded beam has
also recently been given by Jensen et al. [12].

A general mathematical tool for dealing with fast excited systems called the method of
direct partition of motion (DPM) was provided by Blekhman [8]. To understand and
model the e!ect of the fast excitation, he suggested the separation of the fast component of
the motion, driven by the excitation, from the slow component of the motion. Using the
method of DPM, one can obtain an equation governing this slow motion only, the equation
0022-460X/00/290577#13 $35.00/0 ( 2000 Academic Press
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of slow motion. Herein, the average e!ect of the fast excitation is reduced to a "ctive force,
which Blekhman called the vibrational force.

Tcherniak and Thomsen [13] suggested an alternative approach to obtain the equation
of slow motion based on a modi"ed method of multiple scales. The concept is similar to
DPM: separate the fast and the slow motions to obtain the average e!ect of the fast
excitation. Tcherniak [14] used this alternative approach to show the in#uence of fast
excitation on a continuous system: a simply supported beam with distributed fast excitation
force. He separated the fast and slow components of the governing "eld equation for the
beam without "rst performing a discretization. He thereby obtained an equation of slow
motion in which the vibrational force was given in a continuous form. This continuous form
allowed direct analysis of the e!ect of changes in the distribution of the fast force, and
provide greater physical understanding of the problem.

This paper deals with another example of non-trivial e!ects of fast excitation on
a continuous system: a spinning annular disc clamped at one rim and free at the other. The
fast parametric excitation is obtained by a non-constant rotation speed. This system has
been considered by Young [15], although he studied resonance phenomena whereas this
study deals only with non-resonant motion. In a similar approach to that of Tcherniak [14],
the equation of slow motion for the system and vibrational force are obtained in
a continuous form using the modi"ed methods of multiple scales. An analysis of slow
motion is conducted which shows that the vibrational force adds positive-de"nite linear
sti!ness to the disc about its plane equilibrium. The equation of slow motion is then
discretized using Galerkin's procedure. The lower natural frequencies of the spinning disc
are thereby determined which show the sti!ening e!ect of the pulsating rotation speed.
Numerical simulations based on a "nite di!erence approximation are performed and
con"rm the analytical results from the separation of motion.

2. THE MODEL

Consider the disc con"guration in Figure 1. An annular disc of thickness h, inner
radius r

i
and outer radius r

o
is considered. The disc is thin (h@r

o
) and isotropic with

Young's modulus E, the Poisson ratio l and density o. The disc is either clamped at the
inner radius and free at the outer rim, or vice versa. It is rotating with the non-constant
speed

X
d
"X

0
(1#a sinX

v
t), (1)

where the amplitude of the speed variation is small a@1, and the frequency is large
compared to the lower natural frequencies of the disc. The critical rotation speed of
spinning discs is of the same order as the lower natural frequencies (e.g., references [1, 16]);
thus, at subcritical mean speeds: X

v
AX

0
.

The position of a material point P on the midplane of the disc is described in a co-rotating
disc ,xed frame as (R, h,=), where= is the transverse displacement of the point. Note that
it is thereby assumed that the de#ection of the midplane is parallel to the Z-axis.

The linear "eld equation governing small transverse vibrations (=@h) of a thin spinning
disc is given by the linearized classical plate theory and can be found in several papers on
the subject (e.g., references [4, 17] ). The governing "eld equation can be written in
a non-dimensional form as

w
, qq#g$4w

,q#a$4w#K[w]"0, (2)



Figure 1. Disk spinning at a non-constant speed and the disk "xed co-ordinate system.
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where the linear operator K describing the transverse component of membrane stresses can
be written as
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and the non-dimensional variables are given as
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where p* is dimensional stress, i is the radius ratio of the annular disc, a is the ratio between
the bending sti!ness and the mean restoring force due to the centrifugal stresses, and the
non-dimensional excitation frequency is large, )A1.

The boundary conditions for the transverse de#ection at the clamped rim are

w"0 and w
, r
"0 (5a)

and at the free rim
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which model the vanishing moment and e!ective shear force. Additionally, circumferential
periodicity w(r, h, q)"w (r, h#2n, q) must be satis"ed.

The non-dimensional membrane stresses due to the centrifugal and angular acceleration
of the disc elements, are derived in Appendix A. The stresses satisfy the inplane equilibrium
equations, neglecting inplane accelerations, and the boundary conditions of vanishing
displacement on the clamped edge and vanishing radial normal and shear stress on the free
edge. The stresses are axisymmetrical and can be written as

p
rr
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rr
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rh"f
rh (r) aXcosXq, (6)

where f
ii

are radial functions given in Appendix A.
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The higher modes of the disc may be excited by the high-frequency parametric excitation
given by operator (3) and stresses (6). In the following separation of motion it is presumed
that such resonances with the higher modes do not occur. Frequency-dependent structural
damping is assumed to suppress these resonances in the real disc. This type of structural
damping can be modelled by internal viscoelastic damping, g$4w

,q , which is proportional to
the rate of change in the bending strains. Structural dissipation due to frictional losses at the
clamping interface is also assumed to be modelled by the viscoelastic damping.

3. SEPARATION OF FAST AND SLOW MOTION

The governing "eld equation (2) with stresses (6) can be written as

w
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where ¸
c

and ¸
a

are linear sti!ness operators modelling the transverse components of
stresses due to the centrifugal acceleration and the angular acceleration respectively.

Equation (7) is a non-autonomous partial di!erential equation. The time-dependent
terms on the right-hand side (r.h.s.) are called the fast forces due to the high frequency
(XA1). The left-hand side contains the inertial and slow forces, which in this case are
viscoelastic damping, bending sti!ness and sti!ness due to the mean part of the centrifugal
acceleration.

3.1. TIME SCALES AND SEPARATION OF MOTIONS

Following the procedure by Tcherniak and Thomsen [13], a small parameter
e"X~1@1 is de"ned, and two time scales are introduced

¹
0
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1
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where ¹
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are considered as independent, fast and slow, time scales. The time
derivative thereby transforms to
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A perturbation solution to equation (7) in the form
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is sought. In this perturbation solution the dominating part z(r, h, ¹
1
) is the slow

component of the motion, and the higher order t-terms are small overlays of fast motion on
this slow motion.
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3.2. MAGNITUDE ORDERING

The order of the slow forces is supposed to be O (1), except for the viscoelastic damping
which is of order e. The pulsation amplitude is small (a"O(e)), thus the last term on the
r.h.s. of equation (7) is the dominating part of the fast forces. For the fast forces to a!ect the
slow motion, this term must be of order e~1 [13]. The product a¸

a
[w] must therefore be of

order 1.
To determine the order of ¸

a
[w], it is noted that the radial shape function of the shear

stress "eld, f
rh , contains the term 1/r2 (see Appendix A, equation (26)). Assuming that

i"O (e1@2) and noting that i)r)1, the shear stress is assumed to vary rapidly with r.
This can be expressed as frh"frh (r/e), which when substituted into (8) shows that ¸

a
[w] is of

order e~1 and a¸
a
[w]"O(1).

This assumption, however, only holds for clamped}free discs. It is invalid for
free}clamped discs, because the coe$cient of 1/r2 in f

rh in this case is equal to i4 (see
Appendix A, equation (28)). Hence, the following separation of motion and analysis is only
valid for a clamped}free disc.

3.3. EQUATION OF SLOW MOTION

Substitution of the perturbation solution (11) into the partial di!erential equation (7) and
collection of terms of equal order yields the equation of order e~1:
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where c
1
"0 due to the boundedness of the solution as ¹

0
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2
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contained in the slow motion z (r, h, ¹
1
) and can therefore be omitted. Equation (12) shows

that the dominating part of the fast motion, t, is determined from an equilibrium between
inertia forces and the excitation force. Damping and sti!ness forces are neglected, thus the
fast motion t is assumed to be non-resonant and in anti-phase with the excitation force.

Now that the fast motion is determined, its e!ect on the slow motion, z, can be
determined from the equation of order e0:
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The second order part of the fast motion, t
2
, is not needed. The condition that t

2
must be

bounded for ¹
0
PR gives however an equation for determination of z. The right-hand

side of equation (14) can be split into two parts: ¹
0
-harmonic terms and terms with

a non-vanishing ¹
0
-average. The latter terms will create secular terms in the solution of

equation (14). Hence, boundedness of t
2
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is zero. De"ning the ¹
0
-average as S T"(2n)~1:2n

0
( ) d¹

0
, this condition reduces to

D2
1
z#g$4D

1
z#a$4z#¸

c
[z]"S¸

a
[t]acos¹

0
T. (15)

Substituting the solution for t into this equation yields the equation of slow motion
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where the right-hand side describes the slow force due to the fast excitation of the disc. This
force is the vibrational force [8].

The non-autonomous equation (7) governing the full motion of the disk is reduced to an
autonomous partial di!erential equation (16) governing only the dominating slow part of
the disc motion. In this equation the average e!ect of the fast forces is given by the
vibrational force. Similar to the analysis of the e!ect of high-frequency pulsating #uid #ow
in a cantilever pipe by Jensen [9], the magnitude of this force is independent of the
excitation frequency and depends only on the pulsation amplitude.

4. ANALYSIS OF SLOW MOTION

For both critical speed resonance and aeroelastic instabilities, the dominating part of the
response is low-frequency slow motion (e.g., references [1, 5]). This slow motion is the
motion of interest, and the fast motion due to the fast excitation is only of second order
interest, as formulated by the perturbation solution (11). Through the separation of fast and
slow motion, the e!ect of the fast excitation on the low-frequency response can now be
analyzed using the autonomous equation of slow motion (16).

4.1. POSITIVE DEFINITENESS OF THE VIBRATIONAL FORCE

It is "rst shown that the fast parametric excitation always adds sti!ness to the disc. This is
done by proving that the operator of the vibrational force a2¸2

a
is positive de"nite.

Let the domain of the disc be D"M(r, u): i)r)1, 0)u(2nN, and the space of
complex-valued functions on D be denoted as (C, D) . An inner product on (C, D) is de"ned
as
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where the bar represents a complex conjugate. The subset of complex-valued functions with
"nite ¸

2
-norm on D which satisfy boundary conditions (5) is denoted as ¸*

2
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shown by partial integration and use of boundary conditions that the spatial operators
$4 and K of the governing equation (2) are both self-adjoint. The operator ¸

a
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also self-adjoint and symmetric. Thus the operator of the vibrational force ¸2
a
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de"nite, because the symmetry of ¸
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which shows that the sti!ness due to the vibrational force is positive de"nite.

4.2. GALERKIN DISCRETIZATION

The circumferential periodicity condition means that any transverse de#ection of the disc
can be described exactly by the Fourier series:

z(r, h, q)"
=
+ (Wc

n
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(r, q) sin nh), (19)
n/0
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where Wc
n
and Ws

n
are coe$cient functions of the series and depend on radius r and time q.

Note that the subscript n denotes the number of nodal diameters of the modes.
The substitution of equation (19) into equation (16) and collection of terms of equal

harmonics gives two identical and uncoupled equations for the sine and cosine mode
coe$cient functions, Ws

n
and Wc

n
. Because the coe$cient functions are uncoupled, the

superscripts are omitted, and the equation for each n can be written as
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where the radial operators (with superscript r) become
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To obtain the corresponding radial boundary conditions for W
n
, expansion (19) must be

inserted into equation (5).
The coe$cient function W

n
(r, q) is approximated by the "nite expansion of the radial

eigenfunctions R
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(r) of the stationary disk [18]:
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where m denotes the number of nodal circles of the mode (m, n). Substitution of equation
(22) into equation (20), multiplication with R
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where d
lm

is Kronecker's delta. The sti!ness coe$cient due to the vibrational force is clearly
positive de"nite. Note that the vibrational force is zero for axisymmetrical modes n"0.

4.3. NATURAL FREQUENCIES

The lower natural frequencies of the disc under the in#uence of the fast excitation are
determined from the eigenvalue problem (23) as u

mn
"Im Mj

mn
N. Figure 2 shows the

undamped natural frequencies of the three lowest asymmetrical modes m"0 and
n"1, 2, 3, as a function of pulsation amplitude a. The disc parameters are l"0)3, i"0)3
and a"0)1. A su$cient convergence of the frequencies (error (0)1%) is obtained with two
terms used in expansion (22). Note that no excitation frequency X has been given in this



Figure 2. Normalized natural frequencies of lower asymmetrical modes of a clamped}free disk as a function of
pulsation amplitude a for g"0, l"0)3, i"0)3 and a"0)1. Points s: Numerical simulations with X"100 and
g"0.0003 (section 5).
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example because the vibrational force is only dependent on the pulsation amplitude. The
points in Figure 2 are obtained from numerical simulations and presented in section 5.

The frequencies u
mn

are normalized with the frequencies of the unexcited disc u
0;mn

. At
a pulsation amplitude of 20% of the mean rotation speed (a"0)2), the maximum increase
of the frequencies due to the fast excitation is 6%. This is for mode (0, 2) which has the
largest slope. Frequency curves for modes with n'3 have been computed and show that
the slope decreases with mode number n.

The lower asymmetrical modes of the clamped}free discs are the critical modes in the case
of critical speed resonance instabilities (e.g., references [1}3]) or aeroelastic instabilities (e.g.,
references [5, 6]). In both cases, the increased linear sti!ness due to the fast parametric
excitation can stabilize the plane equilibrium of a disc spinning faster than its critical speed.
The rotation speed, in this case, cannot be far from the critical speed because the e!ect of
fast excitation is small. However, the main aim of this analysis is not to solve the stability
problem of spinning disc devices, but to show that fast excitation of spinning discs has
unexpected e!ects on the linear sti!ness of its lower modes.

5. NUMERICAL ANALYSIS OF THE FULL MOTION

To check the analytical results of the separation of motion, these are compared to
a numerical solution of the full equation of motion (7).

5.1. NUMERICAL MODEL

The numerical solution is based on a "nite di!erence approximation of the governing
equations for the coe$cients functions of the sine and cosine modes. Substitution of the
circumferential expansion (19) into equation (7) and collecting terms of equal harmonics
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gives
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where the operators Kr
b`n

, ¸r
c;n

and ¸r
a
are given by equation (21). The boundary conditions

for W s
n
and Wc

n
are obtained by inserting equation (19) into equation (5). Unlike the equation

of slow motion, the sine and cosine modes are now linearly coupled through the angular
acceleration term. Because the coupling occurs between modes with equal mode number n,
it is called an intra-modal coupling.

Two time-dependent vectors are de"ned to describe the coe$cient functions, Ws
n
(r, q) and

Wc
n
(r, q), in a "nite number of points along a radial of the disc. Operators (21) and the

boundary conditions are then approximated by simple central di!erences based on this
discretization. These approximations are used to set up two sets of second order ordinary
di!erential equations (ODEs) which are coupled through the intra-modal coupling. The full
set of ODEs are then rewritten on a "rst order form so that they can be integrated with
a Runge}Kutta}Verner "fth and sixth order method.

The separation of motion presumes non-resonant fast motion. This condition is assumed
to be satis"ed for a real disc where primary and secondary parametric resonances may be
suppressed naturally by structural dissipation [19]. To model this structural dissipation, the
regions of primary and secondary resonances in the (a, X)-plane are avoided by using
a su$cient quantity of internal viscous damping, g, in the numerical simulations.
Combination resonances that may occur in a parametrically excited multiple-
degrees-of-freedom system cannot always be suppressed by viscous damping [19].
However, such resonances have not been encountered in the simulations.

5.2. COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

The curves in Figure 2 show the natural frequencies determined from the equation of slow
motion (16). The points in Figure 2 represent frequencies obtained by numerical
simulations. The comparison shows that the equation of slow motion describes the
behaviour of these lower natural frequencies as a function of pulsation amplitude. A more
detailed comparison of the analytically predicted and numerically integrated motion of the
disc is now performed.

The two equations (25) with the intra-modal coupling lead to a natural separation of the
fast and slow motions in the numerical simulations; the initial conditions of the numerical
integration are chosen such that Wc

n
(r, 0) is equal to the "rst eigenmode of equation (25) for

a"0, while Ws
n
(r, 0)"WQ s

n
(r, 0)"WQ c

n
(r, 0),0. The dominant motion of the disc is thereby

slow oscillations in the cosine mode, thus z(r, h, q)"Wc
n
(r, q) cos nh. The sine mode will be

excited by the fast excitation through the intra-modal coupling, i.e., the sine mode vibration
describes the fast component of the disc motion, t (r, h, q, Xq)"Ws

n
(r, q, Xq) sin nh. It is

noted that the fast excitation due to the centrifugal acceleration is of order e and has not
shown any e!ect on the numerical results.

Figure 3 shows time history plots of the cosine mode (slow) and sine mode (fast)
oscillations (n"2) at the free outer rim r"1 for a disc with l"0)3, i"0)3 and a"0)1.
The internal damping is g"0)001, and the rotation speed has a pulsating overlay of a"0)2
and X"100.

The time histories of the cosine mode, with and without fast parametric excitation, are
plotted. They clearly show the decrease in the period of oscillation due to the fast excitation.



Figure 3. Time history plots of sine and cosine modes by numerical solution of equations (25) with
n"2, a"0)2, X"100 and g"0)001. The analytical time history of the sine mode vibration is obtained from
equation (13).
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The amplitude of the sine mode oscillations is approximately 100 times smaller than that
of the slow motion, which agrees with the assumption that the fast motion is of order e. The
solid curve in the time history plots of the sine mode is obtained by the numerical
integration, while the dashed curve represents the analytical solution for the fast motion
(13). Except for some transient motion, the two curves almost coincide. Thus, the numerical
integration of the full equation of motion supports the results of the separation of motion:
the fast motion is in anti-phase with the fast excitation and has the amplitude and frequency
given by equation (13).

The analytical separation of motion predicts that the e!ect of the vibrational force on the
lower modes is independent of excitation frequency X. This is valid assuming that X is
su$ciently large compared to the corresponding natural frequencies and that no resonant
motion of higher modes occurs. Numerical simulations performed for di!erent excitation
frequencies, however, indicate that there is a dependency of the vibrational force on both
X and the quantity of internal damping g.

The upper part of Figure 4 shows the point frequency response of the disc for modes with
n"1 and damping g"0, 0)0002 and 0)0004. While the lower modes are almost una!ected
by the internal damping, the highest modes in the frequency response are over-damped.

In the lower part of Figure 4, the normalized frequency of the cosine mode (m, n)"(0, 1)
is shown as a function of X for a"0)1 and two di!erent damping coe$cients g"0)0002
and 0)0004. After a few variations at low excitation frequencies, both sets of frequencies
become independent of X and approach the analytical prediction shown by the dashed line.
The amplitude of these variations are smaller for g"0)0004 than for g"0)0002. This
indicates that the vibrational force becomes independent of the excitation frequency at
a lower X for higher internal damping.



Figure 4. Top: Frequency response of the disk with n"1, i"0)3, l"0)3 and a"0)1, computed for g"0,
0)0002 and 0)0004. Bottom: Natural frequencies of mode (0,1) as a function of excitation frequency, X, obtained by
numerical simulations for g"0)0002 (d) and g"0)0004 (s).
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A comparison of the three frequency responses (upper part of Figure 4) to the frequency
of the slow motion (lower part of Figure 4), shows that the vibrational force becomes
independent of X in the range of over-damped modes. This observation agrees with the
presumption made in the separation of motion that the fast motion is non-resonant. The
variations of the frequency of slow motion may arise because this presumption fails in the
lower frequency range for a particular amount of internal damping.

6. SUMMARY AND CONCLUSIONS

The e!ect of fast parametric excitation of spinning discs is considered analytically and
numerically.

The parametric excitation is created by a non-constant rotation speed. The pulsating
overlay of the rotation speed has a small amplitude but a very high frequency compared to
the lower natural frequencies. A modi"ed method of multiple scales is used to separate the
motion of the disc into a fast and a slow component. Presuming that the &&fast motion'' is not
in resonance with the fast excitation, an equation governing the &&slow motion'' is derived.
Herein, the average e!ect of the fast excitation is presented by a &&vibrational force'' which is
proportional to the square of the pulsation amplitude but independent of the excitation
frequency.

The separation of motion is performed on operator form and it is shown that the
vibrational force operator is positive de"nite. Natural frequencies of the lower asymmetrical
modes are therefore increased as the pulsation amplitude is increased. Numerical
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simulations based on a "nite di!erence approximation of the equation of full motion
con"rm these natural frequencies obtained from the equation of slow motion. Furthermore,
the numerical simulations show that the vibrational force is independent of excitation
frequency as predicted by the separation of motion.

This work shows that there is a sti!ening e!ect of fast parametric excitation of spinning
discs. Although this increase in sti!ness is shown to be small, this e!ect is unexpected and
will not appear in a traditional analysis. Similar e!ects may arise for a spinning disc with
fast kinematic excitation of its suspension, which is the topic of current research. Obviously,
experiments are needed to con"rm these non-trivial e!ects of fast parametric excitation of
spinning discs.
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APPENDIX A: MEMBRANE STRESSES DUE TO A NON-CONSTANT ROTATION SPEED

The derivation of the resulting membrane stresses (6) is based on the assumption of
plane-stress, negligible inplane material accelerations compared to the body forces, and
compatible linearized Lagrangean strains, i.e., the e!ect of midplane stretching is neglected.

The procedure for the derivation is based on an Airy stress potential representation of the
stresses. First, the radial and circumferential body forces due to the particular kinematic
excitation are derived, yielding the inplane force equilibrium equations [20] in which the
inplane material accelerations are neglected. Secondly, a stress function is de"ned such that
these equilibria are satis"ed. From the compatibility condition for the linear strains [20]
and Hooke's law, a governing equation for the stress "eld is then given by the stress
function. The boundary conditions of the stress "eld are vanishing radial and shear stress at
the free rim, and vanishing radial and circumferential displacements at the clamping radius.
Solving the linear governing equation for the stress "eld, and using superposition of the
general solutions satisfying the compatibility condition [20], the membrane stresses (6) are
obtained.

Non-dimensional body forces due to the centrifugal and angular acceleration through the
non-constant rotation speed (1#a sin Xq) of the disc, can be derived as

p
r
"r (1#a sinXq)2, ph"!r aXcosXq.

These are axisymmetrical, and the derivations described above lead to the axisymmetrical
stresses giving by equation (6). The radial dependencies of the stresses are
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where the constants a
1
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2
and a

3
in the case of a clamped}free disc are
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and in the case of a free}clamped disc,
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